The X-like shaped spatiotemporal structure of the biphoton entangled state in a cold two-level atomic ensemble

نویسندگان

  • Dasen Zhang
  • Zhiming Zhang
چکیده

We study the spatiotemporal structure of the biphoton entangled state generated by the four-wave mixing (FWM) process in a cold two-level atomic ensemble. We analyze, for the first time, the X-like shaped structure of the biphoton entangled state and the geometry of the biphoton correlation for different lengths and densities of the cold atomic ensemble. The propagation equations of the photon pairs generated from FWM process are derived in a spatiotemporal framework. By means of the input-output relations of the propagation equations, the biphoton amplitude function is obtained in a spatiotemporal domain. In the given frequency range, the biphoton amplitude displays an X-like shaped geometry, nonfactorizable in the space-time domain. Such an X-like shaped spatiotemporal structure is caused by the phase matching and the FWM gain. The former leads to the X-like shaped envelope of the biphoton correlation, while the latter gives rise to the oscillations around the X-like shaped envelope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Narrow-Band Biphoton Generation near Atomic Resonance

Generating nonclassical light offers a benchmark tool for the fundamental research and potential applications in quantum optics. Conventionally, it has become a standard technique to produce the nonclassical light through the nonlinear optical processes occurring in nonlinear crystals. In this review we describe using cold atomic-gas media to generate such nonclassical light, especially focusin...

متن کامل

Biphoton Generation in a Two-Level Atomic Ensemble

We have theoretically studied the space-time entangled biphoton state generated from a two-level atomic system. In the photon counting measurement, the two-photon coincidence counting rate is a damped oscillation. The oscillation period is determined by the effective Rabi frequency and the damping rate is determined by the linewidth of the inhomogeneous-broadened ground state and the dipole dep...

متن کامل

Quantum state transfer between matter and light.

We report on the coherent quantum state transfer from a two-level atomic system to a single photon. Entanglement between a single photon (signal) and a two-component ensemble of cold rubidium atoms is used to project the quantum memory element (the atomic ensemble) onto any desired state by measuring the signal in a suitable basis. The atomic qubit is read out by stimulating directional emissio...

متن کامل

Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms.

The nonclassical photon pair, generated via a parametric process, is naturally endowed with a specific form of frequency-time quantum correlations. Here, we report complete control of frequency-time quantum correlations of narrow-band biphotons generated via spontaneous four-wave mixing in a cold atomic ensemble. We have experimentally confirmed the generation of frequency-anticorrelated, frequ...

متن کامل

X entanglement: the nonfactorable spatiotemporal structure of biphoton correlation.

We investigate the spatiotemporal structure of the biphoton entanglement in parametric down-conversion (PDC) and we demonstrate its nonfactorable X-shaped geometry. Such a structure gives access to the ultrabroad bandwidth of PDC, and can be exploited to achieve a biphoton temporal localization in the femtosecond range. This extreme localization is connected to our ability to resolve the photon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017